https://repositorio.ufba.br/handle/ri/15625
Tipo: | Artigo de Periódico |
Título: | Phase transition in the massive Gross-Neveu model in toroidal topologies |
Título(s) alternativo(s): | Physical Review D |
Autor(es): | Khanna, Faqir C. Malbouisson, Adolfo Pedro Carvalho Malbouisson, Jorge Mário Carvalho Santana, Ademir Eugênio de |
Autor(es): | Khanna, Faqir C. Malbouisson, Adolfo Pedro Carvalho Malbouisson, Jorge Mário Carvalho Santana, Ademir Eugênio de |
Abstract: | We use methods of quantum field theory in toroidal topologies to study the N-component D-dimensional massive Gross-Neveu model, at zero and finite temperature, with compactified spatial coordinates. We discuss the behavior of the large-N coupling constant (g), investigating its dependence on the compactification length (L) and the temperature (T). For all values of the fixed coupling constant (λ), we find an asymptotic-freedom type of behavior, with g→0 as L→0 and/or T→∞. At T=0, and for λ≥λ(D)c (the strong-coupling regime), we show that, starting in the region of asymptotic freedom and increasing L, a divergence of g appears at a finite value of L, signaling the existence of a phase transition with the system getting spatially confined. Such a spatial confinement is destroyed by raising the temperature. The confining length, L(D)c, and the deconfining temperature, T(D)d, are determined as functions of λ and the mass (m) of the fermions, in the case of D=2,3,4. Taking m as the constituent quark mass (≈350 MeV), the results obtained are of the same order of magnitude as the diameter (≈1.7 fm) and the estimated deconfining temperature (≈200 MeV) of hadrons. |
País: | Brasil |
Tipo de Acesso: | Acesso Aberto |
URI: | http://repositorio.ufba.br/ri/handle/ri/15625 |
Data do documento: | 2012 |
Aparece nas coleções: | Artigo Publicado em Periódico (FIS) |
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
F. C. Khanna.pdf | 395,77 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.