Tipo: | Artigo de Periódico |
Título: | Hypersurfaces of sn+1 with two distinct principal curvatures |
Título(s) alternativo(s): | Glasgow Mathematical Journal |
Autor(es): | Barbosa, José Nelson Bastos |
Autor(es): | Barbosa, José Nelson Bastos |
Abstract: | The aim of this paper is to prove that the Ricci curvature RicM of a complete hypersurface Mn, n≥3, of the Euclidean sphere Sn+1, with two distinct principal curvatures of multiplicity 1 and n−1, satisfies supRicM≥inff(H), for a function\, f depending only on n and the mean curvature H. Supposing in addition that Mn is compact, we will show that the equality occurs if and only if H is constant and Mn is isometric to a Clifford torus Sn−1(r)×S1(1−r2−−−−−√). |
Editora / Evento / Instituição: | Cambridge University Press |
URI: | http://www.repositorio.ufba.br/ri/handle/ri/6648 |
Data do documento: | 2005 |
Aparece nas coleções: | Artigo Publicado em Periódico (IME)
|
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.